Running CoreOS Container Linux on EC2

The current AMIs for all Container Linux channels and EC2 regions are listed below and updated frequently. Questions can be directed to the CoreOS IRC channel or user mailing list.

Choosing a channel

Container Linux is designed to be updated automatically with different schedules per channel. You can disable this feature, although we don't recommend it. Read the release notes for specific features and bug fixes.

The Alpha channel closely tracks master and is released frequently. The newest versions of system libraries and utilities will be available for testing. The current version is Container Linux 2051.0.0.

View as json feed
EC2 Region AMI Type AMI ID
ap-northeast-1 PV ami-01cec57d2be803977
HVM ami-0969d5224bee04236
ap-northeast-2 HVM ami-0b4d7b563c7e6230a
ap-south-1 HVM ami-06d2e21723685d5eb
ap-southeast-1 PV ami-0abffd8ed6c48a92c
HVM ami-0b6125b679162e091
ap-southeast-2 PV ami-0f198fc39963ed3b0
HVM ami-0d72d7bbb34fb2303
ca-central-1 HVM ami-040c5e0c317fdec50
cn-north-1 PV ami-0949a57e19ecfa6c8
HVM ami-0891c68539f806a44
cn-northwest-1 HVM ami-0b2b6e31ee74a98ef
eu-central-1 PV ami-08ea56dc6164ea4aa
HVM ami-04cafa06187498139
eu-west-1 PV ami-01302b9758872e9a4
HVM ami-05a3da09b0c0a1acd
eu-west-2 HVM ami-058e799f340bbd512
eu-west-3 HVM ami-0ee89700ac98dbc52
sa-east-1 PV ami-0407358c0acbd3485
HVM ami-055fb0317940b19a2
us-east-1 PV ami-0d71982899d5cc62a
HVM ami-0fae36cc6204f81ea
us-east-2 HVM ami-0bb09a14ba3720461
us-gov-west-1 PV ami-0f610f6e
HVM ami-f87a1499
us-west-1 PV ami-0b6070a66fe4c9ca4
HVM ami-01cea01cddaf9458b
us-west-2 PV ami-0a323eea4b1de49cc
HVM ami-094071bbfed0c30b6

The Stable channel should be used by production clusters. Versions of Container Linux are battle-tested within the Beta and Alpha channels before being promoted. The current version is Container Linux 1967.6.0.

View as json feed
EC2 Region AMI Type AMI ID
ap-northeast-1 PV ami-0acc57eb804d615ab
HVM ami-0674bd656e5bbd940
ap-northeast-2 HVM ami-0dedec04918e56116
ap-south-1 HVM ami-0bdbad103cc31c037
ap-southeast-1 PV ami-03e4eacd32a7064b2
HVM ami-0e11019a200802b43
ap-southeast-2 PV ami-065bb02b9292abbca
HVM ami-094bde83db4642610
ca-central-1 HVM ami-0c119337e0f202885
cn-north-1 PV ami-0ad6f04897cfca179
HVM ami-001e6f29a899df749
cn-northwest-1 HVM ami-00a0d2ef649391775
eu-central-1 PV ami-07d47a29bae27ecb4
HVM ami-00946a0f23931daac
eu-west-1 PV ami-0b17d16791d3faa15
HVM ami-0cdf1816f4d8d634e
eu-west-2 HVM ami-0bf0bc4adb43e8fc7
eu-west-3 HVM ami-0a931bb3434fe57f0
sa-east-1 PV ami-09db09e8b1c42b88c
HVM ami-0c33cc9b83b72fae6
us-east-1 PV ami-024f4d044b1f7e4fc
HVM ami-0089347d530e1f3e6
us-east-2 HVM ami-0b15c21563ba827f2
us-gov-west-1 PV ami-ae5937cf
HVM ami-c45638a5
us-west-1 PV ami-0cfd5901e6956c6b0
HVM ami-09e198d9d9ef8052b
us-west-2 PV ami-0e2ce0f3a14fdc3c4
HVM ami-0b0f4f5f0c8c1a797

Container Linux Configs

Container Linux allows you to configure machine parameters, configure networking, launch systemd units on startup, and more via Container Linux Configs. These configs are then transpiled into Ignition configs and given to booting machines. Head over to the docs to learn about the supported features.

You can provide a raw Ignition config to Container Linux via the Amazon web console or via the EC2 API.

As an example, this Container Linux Config will configure and start etcd:

This is the human-readable config file. This should not be immediately passed to Container Linux. Learn more.
# This config is meant to be consumed by the config transpiler, which will
# generate the corresponding Ignition config. Do not pass this config directly
# to instances of Container Linux.

etcd:
  # All options get passed as command line flags to etcd.
  # Any information inside curly braces comes from the machine at boot time.

  # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
  advertise_client_urls:       "http://{PRIVATE_IPV4}:2379"
  initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
  # listen on both the official ports and the legacy ports
  # legacy ports can be omitted if your application doesn't depend on them
  listen_client_urls:          "http://0.0.0.0:2379"
  listen_peer_urls:            "http://{PRIVATE_IPV4}:2380"
  # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
  # specify the initial size of your cluster with ?size=X
  discovery:                   "https://discovery.etcd.io/<token>"
This is the raw machine configuration, which is not intended for editing. Learn more. Validate the config here.
{
  "ignition": {
    "config": {},
    "timeouts": {},
    "version": "2.1.0"
  },
  "networkd": {},
  "passwd": {},
  "storage": {},
  "systemd": {
    "units": [
      {
        "dropins": [
          {
            "contents": "[Unit]\nRequires=coreos-metadata.service\nAfter=coreos-metadata.service\n\n[Service]\nEnvironmentFile=/run/metadata/coreos\nExecStart=\nExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \\\n  --listen-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --listen-client-urls=\"http://0.0.0.0:2379\" \\\n  --initial-advertise-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --advertise-client-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2379\" \\\n  --discovery=\"https://discovery.etcd.io/\u003ctoken\u003e\"",
            "name": "20-clct-etcd-member.conf"
          }
        ],
        "enable": true,
        "name": "etcd-member.service"
      }
    ]
  }
}

Instance storage

Ephemeral disks and additional EBS volumes attached to instances can be mounted with a .mount unit. Amazon's block storage devices are attached differently depending on the instance type. Here's the Container Linux Config to format and mount the first ephemeral disk, xvdb, on most instance types:

This is the human-readable config file. This should not be immediately passed to Container Linux. Learn more.
# This config is meant to be consumed by the config transpiler, which will
# generate the corresponding Ignition config. Do not pass this config directly
# to instances of Container Linux.

storage:
  filesystems:
    - mount:
        device: /dev/xvdb
        format: ext4
        wipe_filesystem: true

systemd:
  units:
    - name: media-ephemeral.mount
      enable: true
      contents: |
        [Mount]
        What=/dev/xvdb
        Where=/media/ephemeral
        Type=ext4

        [Install]
        RequiredBy=local-fs.target
This is the raw machine configuration, which is not intended for editing. Learn more. Validate the config here.
{
  "ignition": {
    "config": {},
    "timeouts": {},
    "version": "2.1.0"
  },
  "networkd": {},
  "passwd": {},
  "storage": {
    "filesystems": [
      {
        "mount": {
          "device": "/dev/xvdb",
          "format": "ext4",
          "wipeFilesystem": true
        }
      }
    ]
  },
  "systemd": {
    "units": [
      {
        "contents": "[Mount]\nWhat=/dev/xvdb\nWhere=/media/ephemeral\nType=ext4\n\n[Install]\nRequiredBy=local-fs.target",
        "enable": true,
        "name": "media-ephemeral.mount"
      }
    ]
  }
}

For more information about mounting storage, Amazon's own documentation is the best source. You can also read about mounting storage on Container Linux.

Adding more machines

To add more instances to the cluster, just launch more with the same Container Linux Config, the appropriate security group and the AMI for that region. New instances will join the cluster regardless of region if the security groups are configured correctly.

SSH to your instances

Container Linux is set up to be a little more secure than other cloud images. By default, it uses the core user instead of root and doesn't use a password for authentication. You'll need to add an SSH key(s) via the AWS console or add keys/passwords via your Container Linux Config in order to log in.

To connect to an instance after it's created, run:

ssh core@<ip address>

Multiple clusters

If you would like to create multiple clusters you will need to change the "Stack Name". You can find the direct template file on S3.

Manual setup

TL;DR: launch three instances of ami-0fae36cc6204f81ea in us-east-1 with a security group that has open port 22, 2379, 2380, 4001, and 7001 and the same "User Data" of each host. SSH uses the core user and you have etcd and Docker to play with.

Creating the security group

You need open port 2379, 2380, 7001 and 4001 between servers in the etcd cluster. Step by step instructions below.

This step is only needed once

First we need to create a security group to allow Container Linux instances to communicate with one another.

  1. Go to the security group page in the EC2 console.
  2. Click "Create Security Group"
    • Name: coreos-testing
    • Description: Container Linux instances
    • VPC: No VPC
    • Click: "Yes, Create"
  3. In the details of the security group, click the Inbound tab
  4. First, create a security group rule for SSH
    • Create a new rule: SSH
    • Source: 0.0.0.0/0
    • Click: "Add Rule"
  5. Add two security group rules for etcd communication
    • Create a new rule: Custom TCP rule
    • Port range: 2379
    • Source: type "coreos-testing" until your security group auto-completes. Should be something like "sg-8d4feabc"
    • Click: "Add Rule"
    • Repeat this process for port range 2380, 4001 and 7001 as well
  6. Click "Apply Rule Changes"

Launching a test cluster

We will be launching three instances, with a few parameters in the User Data, and selecting our security group.

  1. Open the quick launch wizard to boot ami-0fae36cc6204f81ea.
  2. On the second page of the wizard, launch 3 servers to test our clustering
    • Number of instances: 3
    • Click "Continue"
  3. Next, we need to specify a discovery URL, which contains a unique token that allows us to find other hosts in our cluster. If you're launching your first machine, generate one at https://discovery.etcd.io/new?size=3, configure the `?size=` to your initial cluster size and add it to the metadata. You should re-use this key for each machine in the cluster.
  4. Use ct to convert the following configuration into an Ignition config, and back in the EC2 dashboard, paste it into the "User Data" field.
    This is the human-readable config file. This should not be immediately passed to Container Linux. Learn more.
    # This config is meant to be consumed by the config transpiler, which will
    # generate the corresponding Ignition config. Do not pass this config directly
    # to instances of Container Linux.
    
              etcd:
                # All options get passed as command line flags to etcd.
                # Any information inside curly braces comes from the machine at boot time.
    
    This is the raw machine configuration, which is not intended for editing. Learn more. Validate the config here.
    {
      "ignition": {
        "config": {},
        "timeouts": {},
        "version": "2.1.0"
      },
      "networkd": {},
      "passwd": {},
      "storage": {},
      "systemd": {}
    }
    
    ` # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4} advertise_client_urls: "http://{PRIVATE_IPV4}:2379" initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380" # listen on both the official ports and the legacy ports # legacy ports can be omitted if your application doesn't depend on them listen_client_urls: "http://0.0.0.0:2379" listen_peer_urls: "http://{PRIVATE_IPV4}:2380" # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3 # specify the initial size of your cluster with ?size=X discovery: "https://discovery.etcd.io/" ```
    • Paste configuration into "User Data"
    • "Continue"
    </li>
  5. Storage Configuration
    • "Continue"
  6. Tags
    • "Continue"
  7. Create Key Pair
    • Choose a key of your choice, it will be added in addition to the one in the gist.
    • "Continue"
  8. Choose one or more of your existing Security Groups
    • "coreos-testing" as above.
    • "Continue"
  9. Launch!
  10. </ol> </div>

    We will be launching three instances, with a few parameters in the User Data, and selecting our security group.

    1. Open the quick launch wizard to boot ami-0831edd5d065b56c0.
    2. On the second page of the wizard, launch 3 servers to test our clustering
      • Number of instances: 3
      • Click "Continue"
    3. Next, we need to specify a discovery URL, which contains a unique token that allows us to find other hosts in our cluster. If you're launching your first machine, generate one at https://discovery.etcd.io/new?size=3, configure the `?size=` to your initial cluster size and add it to the metadata. You should re-use this key for each machine in the cluster.
    4. Use ct to convert the following configuration into an Ignition config, and back in the EC2 dashboard, paste it into the "User Data" field.
      This is the human-readable config file. This should not be immediately passed to Container Linux. Learn more.
      # This config is meant to be consumed by the config transpiler, which will
      # generate the corresponding Ignition config. Do not pass this config directly
      # to instances of Container Linux.
      
            etcd:
              # All options get passed as command line flags to etcd.
              # Any information inside curly braces comes from the machine at boot time.
            
              # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
              advertise_client_urls:       "http://{PRIVATE_IPV4}:2379"
              initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
              # listen on both the official ports and the legacy ports
              # legacy ports can be omitted if your application doesn't depend on them
              listen_client_urls:          "http://0.0.0.0:2379"
              listen_peer_urls:            "http://{PRIVATE_IPV4}:2380"
              # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
              # specify the initial size of your cluster with ?size=X
              discovery:                   "https://discovery.etcd.io/<token>"
      
      This is the raw machine configuration, which is not intended for editing. Learn more. Validate the config here.
      {
        "ignition": {
          "config": {},
          "timeouts": {},
          "version": "2.1.0"
        },
        "networkd": {},
        "passwd": {},
        "storage": {},
        "systemd": {
          "units": [
            {
              "dropins": [
                {
                  "contents": "[Unit]\nRequires=coreos-metadata.service\nAfter=coreos-metadata.service\n\n[Service]\nEnvironmentFile=/run/metadata/coreos\nExecStart=\nExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \\\n  --listen-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --listen-client-urls=\"http://0.0.0.0:2379\" \\\n  --initial-advertise-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --advertise-client-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2379\" \\\n  --discovery=\"https://discovery.etcd.io/\u003ctoken\u003e\"",
                  "name": "20-clct-etcd-member.conf"
                }
              ],
              "enable": true,
              "name": "etcd-member.service"
            }
          ]
        }
      }
      
      • Paste configuration into "User Data"
      • "Continue"
    5. Storage Configuration
      • "Continue"
    6. Tags
      • "Continue"
    7. Create Key Pair
      • Choose a key of your choice, it will be added in addition to the one in the gist.
      • "Continue"
    8. Choose one or more of your existing Security Groups
      • "coreos-testing" as above.
      • "Continue"
    9. Launch!

    We will be launching three instances, with a few parameters in the User Data, and selecting our security group.

    1. Open the quick launch wizard to boot ami-0089347d530e1f3e6.
    2. On the second page of the wizard, launch 3 servers to test our clustering
      • Number of instances: 3
      • Click "Continue"
    3. Next, we need to specify a discovery URL, which contains a unique token that allows us to find other hosts in our cluster. If you're launching your first machine, generate one at https://discovery.etcd.io/new?size=3, configure the `?size=` to your initial cluster size and add it to the metadata. You should re-use this key for each machine in the cluster.
    4. Use ct to convert the following configuration into an Ignition config, and back in the EC2 dashboard, paste it into the "User Data" field.
      This is the human-readable config file. This should not be immediately passed to Container Linux. Learn more.
      # This config is meant to be consumed by the config transpiler, which will
      # generate the corresponding Ignition config. Do not pass this config directly
      # to instances of Container Linux.
      
            etcd:
              # All options get passed as command line flags to etcd.
              # Any information inside curly braces comes from the machine at boot time.
            
              # multi_region and multi_cloud deployments need to use {PUBLIC_IPV4}
              advertise_client_urls:       "http://{PRIVATE_IPV4}:2379"
              initial_advertise_peer_urls: "http://{PRIVATE_IPV4}:2380"
              # listen on both the official ports and the legacy ports
              # legacy ports can be omitted if your application doesn't depend on them
              listen_client_urls:          "http://0.0.0.0:2379"
              listen_peer_urls:            "http://{PRIVATE_IPV4}:2380"
              # generate a new token for each unique cluster from https://discovery.etcd.io/new?size=3
              # specify the initial size of your cluster with ?size=X
              discovery:                   "https://discovery.etcd.io/<token>"
      
      This is the raw machine configuration, which is not intended for editing. Learn more. Validate the config here.
      {
        "ignition": {
          "config": {},
          "timeouts": {},
          "version": "2.1.0"
        },
        "networkd": {},
        "passwd": {},
        "storage": {},
        "systemd": {
          "units": [
            {
              "dropins": [
                {
                  "contents": "[Unit]\nRequires=coreos-metadata.service\nAfter=coreos-metadata.service\n\n[Service]\nEnvironmentFile=/run/metadata/coreos\nExecStart=\nExecStart=/usr/lib/coreos/etcd-wrapper $ETCD_OPTS \\\n  --listen-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --listen-client-urls=\"http://0.0.0.0:2379\" \\\n  --initial-advertise-peer-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2380\" \\\n  --advertise-client-urls=\"http://${COREOS_EC2_IPV4_LOCAL}:2379\" \\\n  --discovery=\"https://discovery.etcd.io/\u003ctoken\u003e\"",
                  "name": "20-clct-etcd-member.conf"
                }
              ],
              "enable": true,
              "name": "etcd-member.service"
            }
          ]
        }
      }
      
      • Paste configuration into "User Data"
      • "Continue"
    5. Storage Configuration
      • "Continue"
    6. Tags
      • "Continue"
    7. Create Key Pair
      • Choose a key of your choice, it will be added in addition to the one in the gist.
      • "Continue"
    8. Choose one or more of your existing Security Groups
      • "coreos-testing" as above.
      • "Continue"
    9. Launch!
    ```` </div> </div> ## Using CoreOS Container Linux Now that you have a machine booted it is time to play around. Check out the [Container Linux Quickstart](quickstart.html) guide or dig into [more specific topics](https://coreos.com/docs).